Sub Themetic Details


Author : Sharma M P, Adholeya A.
Address :
Abstract : Response of Eucalyptus tereticornis to inoculation with indigenous AM fungi in a semi-arid alfisol achieved with different concentrations of available soil P.
Journal : Microbiological Research,
Volume No. : 154
Publish Year : 2000
Page No. : 349-354
Main Data : Eucalyptus tereticornis was grown in a green house in a low phosphorus (0.67 ppm Olsen's P) soil (Typic Haplustalf) inoculated with mixed indigenous arbuscular mycorrhizal (AM) fungi. Soil was amended to achieve P levels of 10, 20, 25, 30 and 40 ppm to evaluate the growth response and dependence of E. tereticornis to inoculation with AM fungi. A positive response to mycorrhizal inoculation was evident at the first two levels of soil P, i.e., at 0.67 and 10 ppm but not at the higher levels of soil P. Dry matter yield of inoculated plants beyond 20 ppm soil P was similar or even less compared to their uninoculated counterparts. Inoculated plants produced maximum dry matter (root and shoot) at 10 ppm soil P, whereas uninoculated plants did not produce until the level reached 20 ppm. The percentage root length colonized by AM fungi decreased from 31% to 3 % as the concentration of P increased beyond 10 ppm soil P. Higher levels of soil P depressed the AM colonization significantly. Inoculated plants had higher shoot P and N contents compared to their uninoculated counterparts at all levels of soil P. However, at the first two lower levels of soil P, inoculated plants showed significantly higher shoot P and N contents over their respective uninoculated counterparts. The increasing shoot P accumulation beyond 10 ppm did not enhance dry matter yields. Inoculated plants had lower values of phosphorus utilization efficiency (PUE) and nitrogen utilization efficiency (NUE) at all levels of soil P except at the unamended level (0.67 ppm) where the inoculated plants showed higher values of NLJE compared to uninoculated control plants. Taking dry matter yield into consideration, Eucalyptus plants were found to be highly dependent on 10 ppm of soil P for maximum dry matter production. Any further amendment of P to soil was not beneficial neither for AM symbiosis nor plant growth.
Web hosting by Somee.com